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Learning Objectives: 

 

We continue to study propagation of electromagnetic waves.  From this 

module students may get to know about the following: 

1. The propagation of electromagnetic waves in a dielectric medium.  In 

this case the velocity of propagation depends on the frequency which 

leads to the phenomenon of dispersion. 

2.  The students are introduced to a simple model of a dielectric. 

3. The phenomena of anomalous dispersion and the low and high 

frequency behaviour of the frequency dependence obtained. 

4. Propagation of waves in a conducting mediumis described.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Electromagnetic Waves – III 

Wave propagation in dielectrics and conductors 
 

9.1 Wave Propagation in Dielectrics 
 

Electromagnetic waves propagate in a medium with a velocity /1v , where  is the 

permittivity of the medium and   is the permeability.  In general both these quantities depend on 

the frequency of the propagating electromagnetic wave.  Only in the case of vacuum is the 

velocity independent of the frequency.  For dielectrics, the velocity can be treated as independent 

only over a limited range of frequencies.  The frequency dependence of the velocity of 

propagation leads to the phenomenon of dispersion, spreading of waves and group velocity as 

distinct from the phase velocity.  In this module we wish to study a simple model of dispersion 

for the purpose of studying these phenomena. 

 

9.1.1 A simple Model 

 

Consider an electron of mass m and charge e bound in the dielectric by a harmonic force 
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Here x
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 is the displacement of the charge and 0  the frequency of oscillation about the 

equilibrium.  If there is also present  a damping force 0xm
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external field ),( txE
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, its equation of motion  is 
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In non-magnetic materials the effect of magnetic field is usually small and has been neglected 

here.  If the intensity of the electromagnetic wave impinging on the medium is not very high, the 

amplitude of oscillation is small and we can evaluate the field on the right hand side at the 

position of equilibrium of the charge.  Let it be )(tE


.  If the field varies harmonically in time 

with angular frequency  , then 
tieEtE 


)( .  In that case the solution can be written in the 

form 
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On substituting into equation (2) we obtain the solution 
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The dipole moment of the charge is given by  
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Let there are be N molecules of the dielectric per unit volume and Z electrons per molecule.  

Further all the electrons in the molecule may not have the same binding frequency and damping 

constant.  Let there be fj electrons per molecule with binding frequency j  and damping constant 

j   Then 
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The dielectric constant   is then given by 
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For a proper understanding of j , j  and fj, we have to appeal to quantum mechanics.  With 

suitable quantum-mechanical definition of these quantities, equation (7) provides a reasonably 

good description of the atomic contribution to the dielectric constant,  . 

 

9.1.2 Anomalous Dispersion 

 

The damping constants j  are usually small compared to the resonant frequencies j .  This 

implies, from the above equation (7) that the dielectric constant   has only a small imaginary 

part for most frequencies.  The factor 
22

 j  is positive for j   and negative for 

j  .As a result for “low” frequencies, low meaning frequency less than the lowest 

resonant frequency, all the terms contribute with the same positive sign and the dielectric 

constant )( is greater than unity.  As the frequency is increased, successive resonant 

frequencies are passed, more and more terms contribute with negative sign until the whole sum 

becomes negative and the dielectric constant )( becomes less than unity.  At any of the 

resonant frequencies, the real part vanishes and the corresponding term becomes pure 

imaginary and large, since j is small.  [See Figure 7.8 frpm Jackson Ed 2] 

 

Away from the resonant frequencies, the dispersion is normal dispersion and close to the 

resonant frequencies it is anomalous dispersion.  Except close to the resonant frequency, 

i.e.; in normal dispersion, the real part of the dielectric constant of the medium increases 

with frequency; the imaginary part remains small, usually negligibly small.  On the other 

hand, in anomalous dispersion the real part drops and the imaginary part increases to a 

significant value. 

 

It is also clear from equation (7) that the imaginary part is positive and a positive 

imaginary part implies dissipation of energy, i.e., transfer of energy from the 

electromagnetic wave to the medium, usually in the form of heat.  The regions where 

imaginary part of κ is large are called regions of resonant absorption. 

 



 

 

The attenuation of a wave is most easily expressed in terms of the wave number k.  If the 

wave number is written as 
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then the parameter   is known as the attenuation constant or absorption coefficient.  The 

amplitude of the wave falls off as 2/ze   and hence the intensity as ze  .  Now the 

relation between the wave number and the dielectric constant is given by 
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For non-magnetic materials, m , the relative permeability, can be taken to be unity.  On 

squaring and comparing real and imaginary parts, we have 
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Away from resonant absorption, kim<<kre, and we can neglect the second term on the left hand 

side of equation (10).  Hence 
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The fractional decrease of intensity per wavelength is  
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9.1.3 The Low Frequency Behaviour – Electrical Conductivity 

 

Let us look at the low frequency limit of the behaviour first.  The low frequency response 

depends crucially on whether the lowest resonant frequency is zero or nonzero.  For insulators the 

lowest resonant frequency is different from zero.  In that case, from equation (7) we obtain for the 

dielectric constant the expression (on putting j =0) 
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which agrees with the expression familiar from electrostatics. 

 

On the other hand if some fraction f0 of the electrons are free in the sense that they have zero 

resonant frequency, the dielectric constant is singular at 0 .  If the contribution of the free 

electrons is shown separately, equation (7) for the dielectric constant takes the form 
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or 
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where 
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is the contribution of all the rest of the frequencies. 

 

To understand the singular behaviour let us look at the Maxwell’s equation 
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Let us assume that the medium obeys Ohm’s law, EJ


  and has the normal dielectric constant 

0 .  With harmonic time dependence we have i
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If we do not insert Ohm’s law explicitly but attribute all the properties of the medium to the 

dielectric constant, then on comparing with equation (15) we obtain 
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This is basically the classical Drude model of conductivity.  The damping constant 00 / f  can be 

determined empirically from the experimental data on conductivity.  The quantity Nf0  is the 

number of free electrons per unit volume in the medium.  Putting in the experimental values of 

various quantities, we get 
113

00 sec103/ f .  Assuming 10 f , we see that for frequencies 

up to 
1310  electrical conductivity of metals is essentially real and independent of the frequency.  

This range is well beyond the microwave region (  up to around 1011).  In the higher frequency 

range of frequency the conductivity is complex, both real and imaginary parts are significant and 

it varies with frequency according to equation (16).   

 

 Though classical theory gives an overall picture of conductivity, the problem basically is 

one of quantum mechanics.  The concepts of Pauli exclusion principles, band theory of 

solids, free and valence electrons, all quantum-mechanical concepts play an important 

role. 

 

 The distinction between conductors and insulators is an artificial one at least away from 

0 .  If the medium possesses free electrons it is a conductor, otherwise an insulator.  

But at nonzero frequencies the contribution of conductivity to the dielectric constant is 

just like any other contribution from the resonant amplitudes.  Whether we say that the 

dispersive properties of a medium are due to complex dielectric constant or due to 

frequency dependent conductivity are two different ways of saying the same thing. 

 

9.1.4 High-Frequency Limit – Plasma Frequency 
 

Now let us look at the behaviour of the medium at high frequencies; by high we mean that the 

frequency is well above the highest resonant frequency of the material.  At such high frequencies 

equation (7) reduces to 
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where 
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The frequency P , which depends on the total number   NZfN i  of electrons per unit 

volume, is called plasma frequency of the medium.  In this limit the wave number is given by 
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or 
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A relation like this between the frequency and wave number is called a dispersion relation.  The 

dispersion relations and the analyticity properties of )(k  in the complex k-plane play a very 

important role in quantum electrodynamics, particle physics and solid state physics etc. 

 

In dielectrics equation (17) applies for P  .  The dielectric constant is then close to but less 

than unity.  It increases slightly with the frequency and approaches unity when frequency tends to 

infinity. 

 

In certain situations, however, such as ionosphere the electrons are free and damping is 

negligible.  Then equation (17) holds over a wide range of frequencies, including P  .  For 

frequencies less than the plasma frequency, the wave number is purely imaginary as can be seen 

from equation (19).  Such waves, incident on a plasma are simply reflected (like total internal 

reflection) and the fields inside the plasma fall off exponentially with distance from the interface.  

The attenuation constant increases with decreasing frequency and approaches cP /2  in the 

small frequency limit. 

 

On the laboratory scale, plasma densities are of the order of (1018 to 1022 ) m-3.  From equation 

(18) this means P  is of order (6.1010- 6.1012) s-1.  The attenuation length which is inverse of 

attenuation constant lies in the range of 2 mm to 0.02 mm for low frequencies.  The expulsion of 

fields from within a plasma is well known and is made use of in confinement of plasma in 

thermonuclear reactors to achieve fusion. 

 

9.2 Electromagnetic Waves in Conductors 
 

As we have mentioned above, the dielectric constant of a material is complex, whether the 

material is a dielectric or a metal.  Whereas for insulators by and large the imaginary part is small 

and can often be neglected, for metals it can be quite significant or even dominant.  We now look 

at the behaviour of electromagnetic waves in metals in some further detail because of the 

importance of the subject.    The real part of the dielectric constant of a metal is generally called 

the “dielectric constant” and the imaginary part as the “conductivity”.  When defined this way, 

the conductivity, as we have seen, is independent of frequency for microwave and lower 

frequency region.   

 

According to Ohm’s law the (free) current density in a conductor is proportional to the electric 

field, so that ( J


 and   here refer to the free current and charge densities respectively.) 

 

  EJ


         (21) 

 

With this, Maxwell’s equations in a conductor take the form 
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Now from the continuity equation (for free charge) 
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together with Ohm’s law (21) and Gauss law (i) above, we have 
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which, on integrating, gives 
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Thus any initial charge density in a conductor dissipates with time, the characteristic time, 

 / .  This of course is the well known fact that the charge resides only on the surface but 

not inside a conductor.  The time constant   is a measure of the goodness of a conductor.  For an 

“ideal” conductor, 0;    and any charge inside a conductor flows immediately to the 

surface.  A conductor is good as long as   is much less than other relevant time intervals, say 

 /1   On the other hand, if   /1 , we have a poor conductor. 

 

After the transient charge disappears, Maxwell’s equations inside a conductor take the form 
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These equations are the same as in dielectrics except for the last term in equation (ii) of (22).  So 

following the same procedure as we did for the case of vacuum or non-conducting medium (take 

the curl of equations (ii) and (iii) and use other equations and various vector identities), we obtain 
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These equations also admit plane-wave solutions, but this time the wave number k is complex: 
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On taking the square root, we write 
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As we can see, for 0 , we recover the results for a dielectric.  The imaginary part of wave 

number leads to an attenuation of the wave; 
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The skin depth d is defined as 

 

  
Ik

d
1

         (32) 

 

It is the distance at which the amplitude of the wave is reduced to 1/e of its original value and is a 

measure of the distance up to which the wave penetrates into the conductor.  The real part of k 

determines the wavelength, the phase velocity and the refractive index: 
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The attenuated plane wave solutions, equations (31) satisfy the modified wave equations (24) and 

(25).  They must, however, also satisfy Maxwell’s equations (22) and (23).  Substituting the 

solution into the Maxwell equations we find, as expected, that the waves are transverse and the 

electric and magnetic fields are transverse to each other, the same as the result obtained for waves 

in a non-dissipative medium: 
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For definiteness, if we take the direction of propagation to be the z-axis, and the electric field 

along the x-axis, then the magnetic field is along the y-axis: 
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We can also express the complex wave number, k, in terms of its modulus and phase as 
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and 
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From equation (34) we see that since 000 E
Ke
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 , the electric field and magnetic 

induction are no longer in phase; in fact 
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the magnetic field lags behind the electric field by an amount  . 
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Thus the real electric and magnetic fields are finally 
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[See Figure 9.18 – Griffiths pg 396] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Summary 

 

1. In this module we describe to the student the propagation of 

electromagnetic waves in various kinds of media.  The velocity in a 

medium depends on the dielectric constant which in turn depends on 

the frequency of the propagating wave. 

2.  We first describe propagation in a dielectric medium.  For this 

purpose we employ a simple model of a dielectric and obtain the 

frequency dependence of the dielectric constant. 

3. The dielectric constant shows a resonant behaviour as a function of 

frequency leading to the phenomenon of anomalous dispersion in the 

intermediate frequency range. 

4. We then describe to the student the low frequency and high frequency 

behaviour of the dielectric constant, which are quite different from 

each other. 

5. Finally we study the case of metals which are a special case of 

dielectrics in which the dielectric constant has a very high imaginary 

part.  This leads to a strong attenuation of the wave in a metal which 

is described in terms of the conductivity of the metal. 

 


